

Emerging Technologies Summit

MAKING THE CONNECTION: From Energy Efficiency Innovation to Delivery

April 19 – 21, 2017

Facilitating Choices: Integration of Deep Energy Efficiency and Renewables with the Grid

CATHY HIGGINS, KEN NICHOLS, TOM WILLIARD, ROBERT SHERICK, RAM NARAYANAMURTHY

Welcome to

Facilitating Choices: Integration of Deep Energy Efficiency and Renewables with the Grid

Cathy Higgins, Research Director New Buildings Institute

- 1. Ken Nichols, Principal, EQL Energy
- **2. Tom Williard**, Principal and CEO, Sage Renewable Energy Consulting
- **3. Robert Sherick**, Principal Manager Renewable Integration, SCE
- 4. Ram Narayanamurthy, Principal Technical Leader, EPRI

The Duck Issue

Source: Jim Lazar, 2016

The GridOptimal[™] Score A New Metric for Rating Building-Grid Interactions

nbi new buildings institute

215

GridOptimal[™]: Why is it Needed?

Currently no metrics that define **building-level grid citizenship** or **rate building-grid interaction** quality

- Different players have different language to discuss the topic
- Grid operators and utilities are struggling to integrate renewable energy ++ onto the grid
- Guide optimal building design and operations

(Conference Paper: ASHRAE Winter Conference, January 2017) (Alexi Miller, PE & Jim Edelson, NBI)

GridOptimal[™]: Critical Bridge Between Buildings and the Grid

GridOptimal[™]: Grid Signature

Grid Signature

GridOptimal[™]: Rating Building-Grid Interactions

Key Benefits:

- Provide a clear, consistent way to measure grid citizenship
- Allow utilities to provide incentives by referencing a common, transparent, reliable standard
- Ensure that **building staff are engaged** in energy AND grid performance
- Create common language and consistent metrics
- Encourage grid-sensitive and responsive building design AND operations

GridOptimal™: How will we do it?

- Bring together key stakeholders and experts to develop standards
- Establish **framework for rating system** that will result in program implementation

- Develop the **rating system**, leveraging existing standards
- Identify **pilot projects** and participants
- Outline incentive programs and financing mechanisms
- Provide educational guidance

Change is Coming

- What's Next for the Utility Industry?
- You don't have to figure it out on your own
- We are assembling the top industry experts to answer these questions

Join us!

Next Speaker

• Ken Nichols, Principal, EQL Energy

- Tom Williard, Principal and CEO, Sage Renewable Energy Consulting
- Robert Sherick, Principal Manager Renewable Integration, SCE
- Ram Narayanamurthy, Principal Technical Leader, EPRI

Facilitating Choices – Integration of Deep Efficiency and Renewable and the Grid

ZNE and the Distribution System Ken Nichols EQL Energy, Portland, OR 503 438 8223 ken@eqlenergy.com

Utilities and Customer DERs

Distribution System Planning

Buildings and Grid Integration: The Good, The Bad, and the Technology

- The Good Defer costs & Renewable Integration
 - 80 DER projects nationwide displacing T&D, most are Distribution
 - Integrates 8,000MW of behind the meter solar (40% in CA)
 - ZNE impact different for Residential and Commercial feeders
- The Bad Increase Distribution costs & rates
 - High DG/ZNE can increase distribution costs
 - HECO (2014)\$210/kW, SCE 2015 2yr \$400-\$600MM
 - Lower kwH usage to recover T&D cost >> rate design
- The Technology solutions
 - Thermal and Chemical storage (CO2 HP,
 - Advanced Inverters to the rescue
 - Distribution Planning add DER critical (feeder snowflakes)
 - Load and DER Management Systems

Campus Load Management defers >\$20MM

Weather drives T&D concerns

Measure	Winter KVA Shed Level 1	Winter KVA Shed Level 2	Summer KVA Shed Level 1	Summer KVA Shed Level 2
Command to Low Speed	4		4	
Command VFD to 50% cfm	0	12	0	12
Convert to Variable Flow Loop	0		0	
Curtail Radiant System	8		8	
Disable Fan Coil Unit Fans	0	0	0	0
Install VFD on Lab Exhaust Fans	83	0	83	0
Lock-Out Elevators	0	120	0	120
Lock-Out EV Chargers	50	0	50	0
Pre-Cool Ice Rink	0	500	0	500
Reduce dP Setpoint	19	0	9	0
Reduce Duct Static Pressure Set Point	321	0	321	0
Reduce Velocity Pressure	9	0	9	0
Remove Bypass Flow Control to dP	11	0	11	0
Shut Off AHU	11	117	11	117
Shut Off Chiller	0	66	0	949
Shut Off DW Booster Pumps	71	0	71	0
Shut Off Electric Boiler	40	0	40	0
Shut Off Heat Pumps	0	108	0	0
Shut Off Heat Recovery	0	146	0	0
Shut Off HR Chiller	0	191	0	0
Shut Off Lights	220	0	220	0
Shut Off Pump	12	21	12	21
Temperature Setback	68	0	274	117
Tune VFD Controls	22	0	22	0
Totals	949	1281	1145	1836

BMS measures on 12 buildings

The BAD: Without Integrated DER planning grid Capex could increase dramatically (HECO 2014)

Item	Violation Trigger	Total
Installed DG (MW)		902
Regulator	Feeder Reverse Flow	\$308,000
LTC	Substation Transformer Reverse Flow	\$1,642,000
Reconductoring	Exceed 50% Backbone Conductor/Cable	\$75,588,700
Substation Transformer and Switchgear	Exceed 50% Capacity	\$54,766,000
Distribution Transformer	Exceed 100% Loading, % GDML Linear Relationship to % Transformers Upgraded	\$15,617,535
Poles and Secondary	Assumed 15% of Distribution Transformer Replacements need poles/secondary	\$3,533,342
Grounding Transformers	Exceed 33% GDML (66% in model)	\$43,045,200
Total		\$194,500,777

SCE DRP Capital Expenditure Estimates

Time Period	Capital Expenditures		CPUC Approval Mechanism		
2015-2017	Distribution Automation	\$40-70 million	Proposed memorandum		
	Substation Automation	\$30-60 million	account to record		
	Communications Systems	\$7-15 million	requirement until		
	Technology Platforms and Applications	\$130-200 million	expenditures are authorized by CPUC		
	Grid Reinforcement	\$140-215 million	-		
	Total	\$347-560 million	•		
2018-2020	Distribution Automation	\$185-320 million	Request recovery in 2018		
	Substation Automation	\$185-320 million	GRC		
	Communications Systems	\$270-470 million			
	Technology Platforms and Applications	\$215-375 million			
	Grid Reinforcement	\$550-1,100 million	-		
	Total	\$1,405-2,585 million	7		

SCE anticipates capital spending to continue at least in the range of current forecast levels, although could result in higher spending pending CPUC approval in future GRCs

The GOOD: Emerging Technologies and Processes

- Distribution Planning tools capable of identifying need and integrating DERs
 - CymeDist V 8.0 (Eaton), SynerGee, PSS, DigSilent, DEW (EDD)
 - Load Forecasting including DERs

• DER tools

- Target DSM for grid issues
- Thermal/energy storage and Load management (DR)
- CTA-2045, EV load control, energy management circuit breaker
- Solar + Storage, and Storage for customer reliability
- Advanced Inverters
 - CA SIWG Phase 1 Mandatory Sep 2017
 - Solar and Storage, Sunspec Alliance
 - SIWG, IEEE 1547, UL 1741

Distribution Resource Planning (DRP)

- Distribution planning integrates energy efficiency, DERs, and market incentives
- These factors would then be balanced against the **avoided costs** of ""traditional" distribution investment/operation
- Leads to competitive solicitation for DERs
 - CA discussing, WA in IRP Rulemaking

PG&E Targeted IDER projects

http://aceee.org/sites/default/files/pdf/conferences/eer/2015/Richard_Aslin_Session_1B_EER15_9.21.15.pdf

PG&E Estimate of Peak Reduction by DER type

Advanced Inverters <u>Phase 1</u>: Seven <u>Autonomous</u> DER Functions (CA Mandatory Sep 2017)

- Support *anti-islanding* to trip off under extended anomalous conditions, coordinated with the following functions.
- *Ride-through of low/high frequency* (56 > f < 64 Hz)
- Ride-through of low/high voltage (50 > V < 120)
- Provide *volt/var control* through dynamic reactive power injection through autonomous responses to local voltage measurements.
- Define default and emergency *ramp rates* as well as high and low limits.
- Provide reactive power by a *fixed power factor*.
- Reconnect by "soft-start" methods (e.g. ramping and/or random time within a window).
- <u>Phase 2</u> addresses communication and change of settings
- <u>Phase 3 addresses</u> communication and control
- Sunspec Alliance is working with inverter manufacturers to certify both Solar and Storage. (<u>www.sunspec.org</u>)

Emerging Technology Takeaways

- Customer desire for higher reliability will assist cost effectiveness of solar+ storage, and grid integration
 - Customer Reliability ex: PGE DSG, STEM, Demand Energy, Blue Pillar
 - Advanced Inverters augment grid support, and reduces utility costs. <u>Utility ownership/control?</u>
- Thermal/Chemical Storage and Load Management
 - CO2 heatpumps and H2O storage for water and HVAC
 - Batteries as Premise backup and grid support
 - CTA 2045 WH, AC, Space heat, pool pumps, etc.
 - Communicating Tstats
- DERMs needed for utility
 - AutoGrid, Blue Pillar, ABB, Siemens, etc.

Ken Nichols, 503 438 8223

http://westernenergyboard.org/2015/05/final-report-released-by-eql

WECC 2022 DER Forecast (less than German PV today)

DER	2022 DER WECC Estimate (GW)	Source
Solar	13	2013 E3 TEPPC study on High DG
СНР	8	2013 E3 TEPPC study on High DG
DR Load Following	2.6	2013 WIEB VER Integration
DR Other	4.7	2013 LBNL 6381, Incorporating Demand Response into Western Interconnection Transmission Planning
Storage	2.1	AB2514 California 2020 mandate , plus 800 MW
Total	30.4	

Background: Typical Distribution Planning

- Each distribution feeder is assessed separately
- Maximum load is determined for the next 3 to 5 to 10 years, based on load profiles and expected customer growth
- Additional capacity, about 50%, is added to ensure the feeder can handle reconfiguration scenarios
- Feeder equipment upgrades or additions are determined: distribution transformers, cables, capacitor banks, voltage regulators, load tap changers, substation transformers, reclosers, automated switches, tie switches, even new substations, etc.
- These distribution costs are either just the "cost of doing business" and/or are assessed by regulators for reasonableness

More Than Smart (MTS) Working Group Purpose & Objectives

- Purpose:
 - Provide an open, voluntary stakeholder forum to discuss core issues toward finding common ground regarding the evolution of California's distribution system and the seamless integration of DER to meet customers' needs and public policy. The results of the discussions will be for the benefit of the participants and will be made public without specific participant attribution.
- Objectives:
 - Define common parameters for the development of distribution planning scenarios for utilities to properly stress test plans and to achieve a measure of comparability among the different plans.
 - Identify and define the integrated engineering-economic analysis required to conduct distribution planning in the context of AB 327 requirements.
 - Define the potential grid end-states in the context of existing plans/roadmaps and identify the considerations regarding grid evolution to meet customers' needs and California's policy objectives.
 - Define the scope and parameters of an operational/DER market information exchange to facilitate an open planning process and enable R&D efforts.
 - Define distribution services associated with identified DER values including performance requirements.
 - Define new distribution operational functions (DSO) and related integration technologies (vendor neutral) to create "node-friendly" open grid

Evolution of DRP Optimal Location Benefits Analysis

Value Analysis: Avoided Costs and Benefits

Locational Value: Avoided Costs and Benefits

Note: Analysis excludes some avoided costs/benefits that do not have a locational dimension. Therefore, analysis is not intended to estimate full stack of avoided costs and benefits associated with DER

Next Speaker

• Ken Nichols, Principal, EQL Energy

• Tom Williard, Principal and CEO Sage Renewable Energy Consulting

- Robert Sherick, Principal Manager Renewable Integration, SCE
- Ram Narayanamurthy, Principal Technical Leader, EPRI

Tom Williard *Principal and CEO* Sage Renewable Energy Consulting

CO SAGE RENEWABLES Key Regulatory and Market Drivers for California Solar and Storage Emerging Technologies Summit April 20-21, 2017

Key Regulatory and Market Drivers for California Solar and Storage

California's Changing Distributed Energy Landscape

- Falling prices vs. regulatory uncertainty
- + Utility Retail Tariffs
 - Big changes coming that don't help solar or storage
- + Project Finance Landscape
 - ITC sunset, irregular incentives and decreased competition
 - Storage market nascence

California's Changing Energy Landscape

Renewable energy and storage costs declining rapidly

+ 50% PV panel price decline 2015-2017 (GTM)

+ 50% Li-Ion battery and BOS cost decline next 5 years (GTM)

Bloomberg 🛱

California's Changing Energy Landscape

Grid loading

Changing load profile of the grid and rate structures impact the value of distributed solar and storage

The <u>Duck Curve</u>: Overgeneration mid-day in spring and fall above 30% RPS

+ Distribution resource sharing <u>requires</u> a smart grid

California's Changing Energy Landscape

Legislation and Regulation

- Utilities required to procure 1.3 GW of energy storage by 2020 to support grid optimization and renewables integration
- Utilities are required to submit distribution resource plans (DRPs) that integrate distributed energy resources (DERs) into distribution grid planning
- The Integrated Distributed Energy Resources (IDER) proceeding is actively considering how best to integrate demand-side resources into utility planning and procurement processes

Source: Shasta Lanterr

UTILITY TARIFFS

Big Changes and Less Support for DG Customers

- TOU Peak and the Duck Curve: large and abrupt changes to TOU periods have an outsized effect on solar, reducing value significantly in some markets
- Tariffs are not stable and CPUC is increasingly reluctant to protect solar customer investments
- Current TOU and associated tariff change proposals do not promote DG storage
- + Solar and storage tariff requirements at odds
 - Other storage value streams need to be enabled to promote storage with solar

UTILITY TARIFFS

- <u>Time of Use Periods</u>: January 2017 CPUC Rulemaking allows utilities to shift time-of-use Peak Periods from afternoon to early evening to better match today's grid loads (Duck Curve).
- This shift has outsized impacts on the value of commercial solar energy – with losses of 10-40% for many customers.
- Utility rate proposals flatten the differential between Peak and Off-Peak loss of solar value and storage arbitrage

PROJECT FINANCE LANDSCAPE

Solar Project Finance – upward cost pressure

- + 30% ITC extended until the end of 2019
 - 3-year stepdown after 2019
- + Reduced Competition
 - SunEdison Bankruptcy
 - SolarCity acquisition by Tesla

Interest Rate and Stock Performance Pressure

- Fed rate hikes will push up borrowing cost
- SolarCity, SunPower, First Solar stock performance

PROJECT FINANCE LANDSCAPE

Storage Project Finance – still developing and dependent on incentives

+ Market and companies not well established

- Perceived risk = storage companies must provide customer financing
- No standardized customer financings yet

+ SGIP incentives oversubscribed

- Some fixes implemented and money allocated, but far less than the market needs
- + Savings Difficult to Prove to Customers
- + Storage incentivized utility tariffs not yet

For more information:

Tom Williard Principal and CEO 0: 415.663.9914

Next Speaker

- Ken Nichols, Principal, EQL Energy
- Tom Williard, Principal and CEO, Sage Renewable Energy Consulting

• Robert Sherick, Principal Manager Renewable Integration, SCE

• Arindam Maitra, Technical Executive EPRI

Facilitating Choices – Integration of Deep Efficiency, Renewables, and the Grid

Robert Sherick Southern California Edison Advanced Technology – Renewable Integration

ELECTRIC VEHICLE INTEGRATION

A BORGA

Customer Choices

BAT ENE STO

NEC ENERGY SOLUTIONS

8

BATTERY ENERGY STORAGE

FLEXIBLE LOAD

ROOFTOP

SOLAR PV

Power **Traditional Grid Architecture** Substation PV PV Flex Flex Storage Storage load Utility load Flexible Storage Load **3rd Party** Aggregators Large-Microgrid Scale PV controller

Distribution Management System

Data

Future Grid Architecture

Utility Integration Bus (UIB)

121 💾 🔤

Optimizer

Substation

Flexible

Load

Power

Арр

Why?

- Beyond interconnecting optimizing
- Leveraging the resources and flexibility to obtain full value
- Creating an adequate infrastructure to coordinate the grid
- Create efficiency and optimization opportunities for all parties
- Reduce risk of centralization without losing reliability of control
- Enable innovation and new market structures

Next Speaker

- Ken Nichols, Principal, EQL Energy
- Tom Williard, Principal and CEO, Sage Renewable Energy Consulting
- Robert Sherick, Principal Manager Renewable Integration, SCE
- Ram Narayanamurthy, Principal Technical Leader, EPRI

Grid Integration of Zero Net Energy Communities

Emerging Technologies Summit

Ram Narayanamurthy

Technical Executive

Electric Power Research Institute

April 20, 2017

Community Groundbreaking Event

biraenergy integrated clean energy solutions

© 2016 Electric Power Research Institute, Inc. All rights reserved.

Project Synopsis

Project location: Fontana, CA California's first ZNE neighborhood Annual peak temperatures ~ 105 F NEM Rules + ZNE, along with decarbonization drive electrificiation

Attained Zero Net Energy @ 4% of home price including PV

Home Energy Management Center

Data Acquisition and Distributed Energy Resource Controls

- Develop and vet "organic" data acquisition system
- Assess control scenarios for load-optimization

How Are These Homes Performing?

Energy Usage in Watts (1 min interval)

Disaggregated load profile

- These ZNE homes are occupied by first time home buyers, not energy enthusiasts
 - Anecdotal \$25 July bill with electric dryer, \$0.64 bill in April
- Very erratic load shape with HPWH and appliance driven peaks
- Models: average loads/time-step; actually discrete, intermittent loads
- Intermittent loads coincident \rightarrow large, unanticipated peaks

What does this mean to the grid? Transformer load shapes

SCE Distribution Standards

- Transformer sizing is based off of <u>available</u> load information, SCE climate zone, building sq. ft, # of customers, and installed HVAC system
- Distribution planning today is based on worst case scenario of total connected load. Storage is counted as a load

			Rating	# Cust	
Factors	Xfmr T1 75kVA	Xfmr T2 50kVA	25 kVA	1-4	
Building Sqft (Adj Ave)	~1800	~1800	50 kVA	5-10	Residential Transforme Loading Limits @SCE
Largest A/C (tons)	4	4	75 kVA	11-15	
Avg A/C (tons)	3.5	3.5			
# of customers	11	9			
Peak Demand per	5.0-5.5kW	5.0-5.5kW	Date	Weekly Measured Xfmr T1	Weekly Measured Xfmr T2
Based on SCE				Peak Demar	nd per lot (KW)
Planning Standard	ing Standard Based on HVAC usage		July 17-24	4.9	3.8
Panel Size	200A	200A	A		0.0
Climate Zone	7	7	Aug 20-27	4.7	3.6

Could Energy storage Provide a Potential Solution Controls are key

Operation based on ToU rates Optimization

- Energy storage is operated to optimize for current ToU rates
 - Peak is Noon 6 PM (ES discharge)
 - Off-peak is 6 PM 6 AM (ES charge)
- 100% SOC maintained overnight

Operation based on ToU Peak Reduction

- Energy storage systems operated with "simulated peak and off-peak"
 - Peak is 5 PM 8 PM (ES discharge)
 - Off-peak is 9 AM 12 PM (ES charge)

ES TOU Peak Reduction

25% SOC maintained overnight

The ES TOU tariff optimization control scheme could potentially cause adverse impacts.

The ES TOU grid balancing control scheme could be beneficial.

Lessons learned – Planning and design

- 1. Minimize the size of PV arrays for multiple benefits:
 - Neighborhood planning and lot fits
 - Least cost pathways
 - Reduce peak backflow
 - Reduce late evening ramps
- 2. NEM drives electrification of heating loads
 - TDV (or source) ZNE definition accounts for gas consumption, and gas heating results in excess annual generation at low payback
 - TDV ZNE favors gas heating lowest first-cost for ZNE_{TDV}
 - \rightarrow Naïve T24 analyst/designer spec gas despite no gas NEM
- 3. Neighborhood solar planning could be a big barrier to reaching current ZNE goals
- 4. Energy efficiency has more capacity benefits than PV
 - PV production is non-coincident with loads

Lessons learned – Grid Impacts and future initiatives

- 1. In distribution planning, most reliable path forward is to increase transformer and wire sizing for ZNE and high PV penetration
 - 50 year planning horizon cannot rely on controls (including storage)
 - Future loads EV and electrified heating are not coincident with PV
 - Customer controlled energy storage is not reliable for grid needs.
- 2. The problem spots for distribution systems is load blocks, and laterals with protection devices and wire sizing
- 3. Distribution systems will need to manage for load peaks almost as much as high penetration PV (coincident loads)
 - Passive energy storage, demand response and energy storage can provide integrated load management
- 4. Research community solar and storage options for ZNE

Together...Shaping the Future of Electricity

Questions and Commentary

