

Distributed Energy Resources in the Pacific Northwest

Ken Nichols

Presented to: PNWER Summit 2015

July 14, 2015

ken@eqlenergy.com 503-438-8223

Distribution utilities will no longer just supply electric energy to customers, but will plan for, coordinate, and manage the flow of electric energy to, from, and between customers.

Northwest Power Act

Priority shall be given: first, to <u>conservation</u>; second, to <u>renewable resources</u>; third, to generating resources <u>utilizing waste heat or generating resources of high</u> <u>fuel conversion efficiency</u>; and fourth, to all other resources.

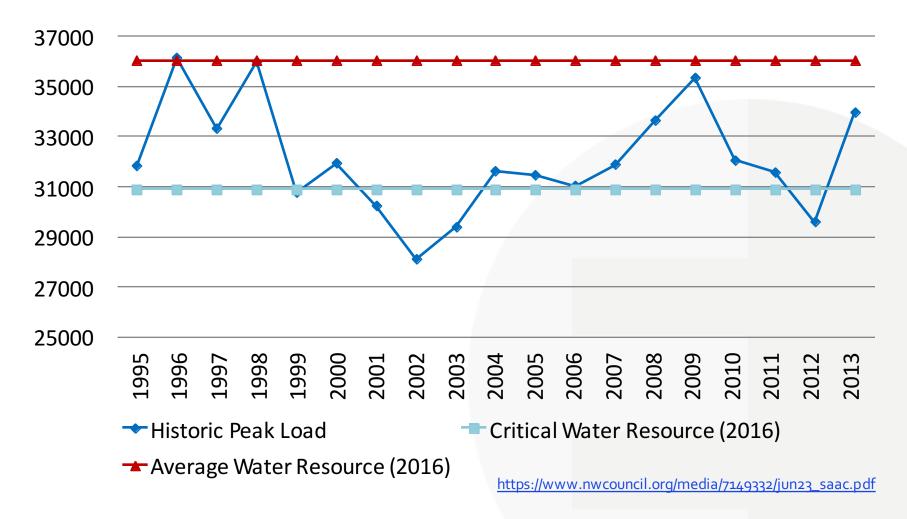
"Electric power" means electric peaking capacity, or electric energy, or both.

"system cost" means an estimate of all direct costs of a measure or resource over its effective life, including, if applicable, the <u>cost of distribution and transmission to the consumer</u> and, among other factors, waste disposal costs, end-of-cycle costs, and fuel costs (including projected increases), and such quantifiable environmental costs and benefits.

https://www.nwcouncil.org/reports/poweract/

Steps Toward the Future

- Is Elon Musk the utility of the future?
 - Utility business models in transition
 Large Supply-Side Capex >>>> Grid Modernization, Reliability, IT
 - "Every feeder is a snowflake"
 - DER value: Location, Location, Location
 Battle: Utility Integration Cost vs. DER Value
 - Technology (trade allies and vendors) and Customers Utility Roadmaps: pilot>demo>scale
- Legislative actions that work
 - Value of solar DER >>> DRP
 - Distribution Resources Planning (CA AB327, WA 2045)
 - Rate Strategies (reflect Utility costs, customer preference)
 - Combined Heat and Power (WA E2SHB 1095, OR SB 844)
 - Support (Mandate) Standards (OpenADR, IEEE1547)
 - Demand Response follows Energy Efficiency (NPCC 7th Plan)



Capacity and Energy

Capacity (dispatchable)	Energy (variable)				
Capacity DSM (aka Demand Response)	Energy DSM (aka Energy Efficiency)				
Energy Storage (Customer, Utility)	Solar				
Dispatched Generation	Wind				
Electric Vehicle Charging					
Combined Heat & Power					
Smart Inverter services (e.g., VAR Support)					

PNW Needs Flexible Capacity (MW)

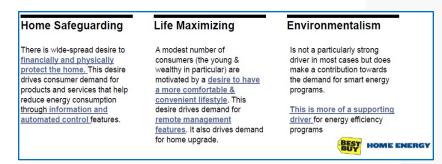
DER Drivers in PNWER

- Cost declines in solar, storage, and smart grid
 - 40% decline since 2011, Panels \$1.31/Watt to \$.50/Watt (peaker is \$1.2/Watt not including fuel)
 - Import tariffs on Chinese solar will slow the steep decline, but decline will continue.
 - \$.038/kWh 20 year solar PPA for NV Energy
 - Tesla's gigafactory to reduce Li-ion battery cost
 - Smart building management systems, thermostats, water heaters, motor load, VFDs
- Customer Expectations
 - Lower costs, reliability, and environmental concern
- Economic Development
 - PNW: Solar Jobs > 6,000. Energy Efficiency > 15,000 jobs
- Reliability
 - 90% of outages is on distribution system. (200GW of backup power in US)
 - PNW requirement for flexible capacity
- Reduced rates
 - Avoid costs for Transmission, Distribution, Generation, etc.
 - 1990s Puget Sound Reliability: voltage support, targeted EE

Customers are looking for reliability, self • Ell ENERGY generation, and environmental stewardship.

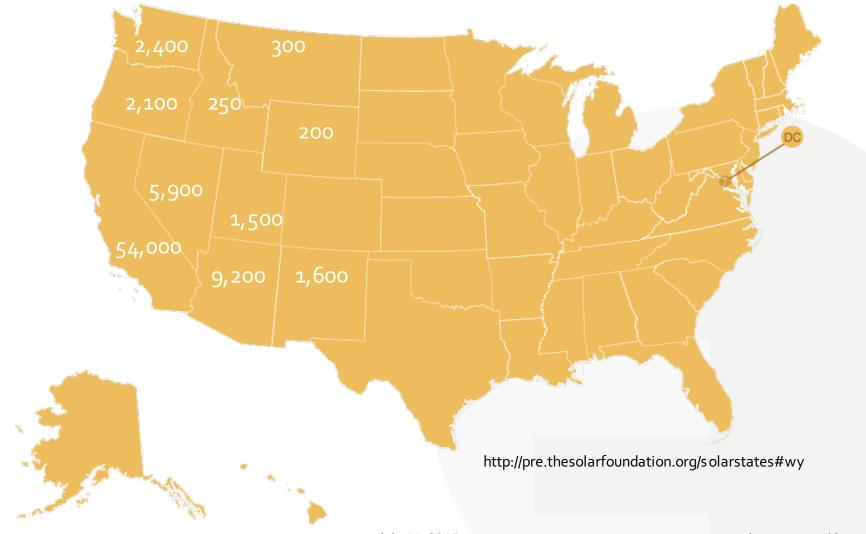
Customer desire for self-reliance increasing

 E&Y: 33% of the multi-national firms are expected to meet a greater share of their energy needs through self-generation over the next five years

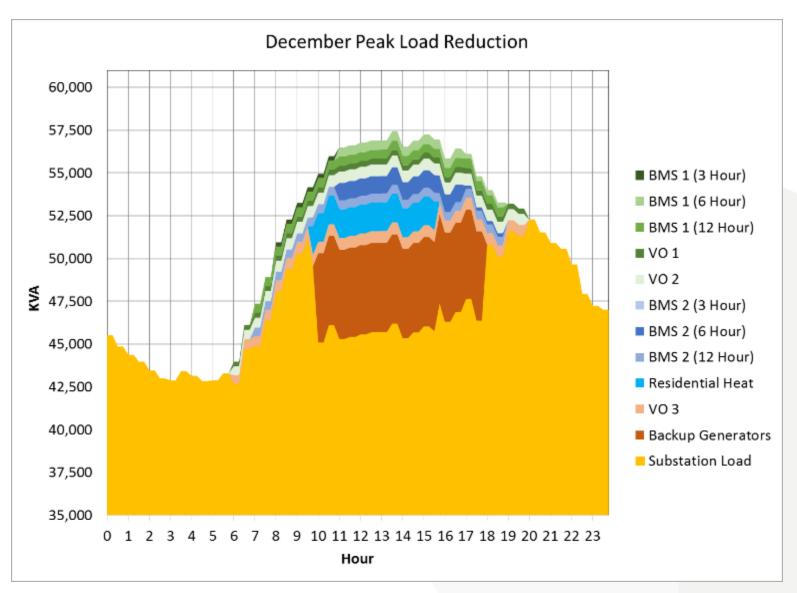

ERNST & YOUNG

 Navigant: nearly 75% of surveyed residential customers have "concerns about the impact electricity costs have on their monthly budgets, and 63% are interested in managing energy used in their homes"

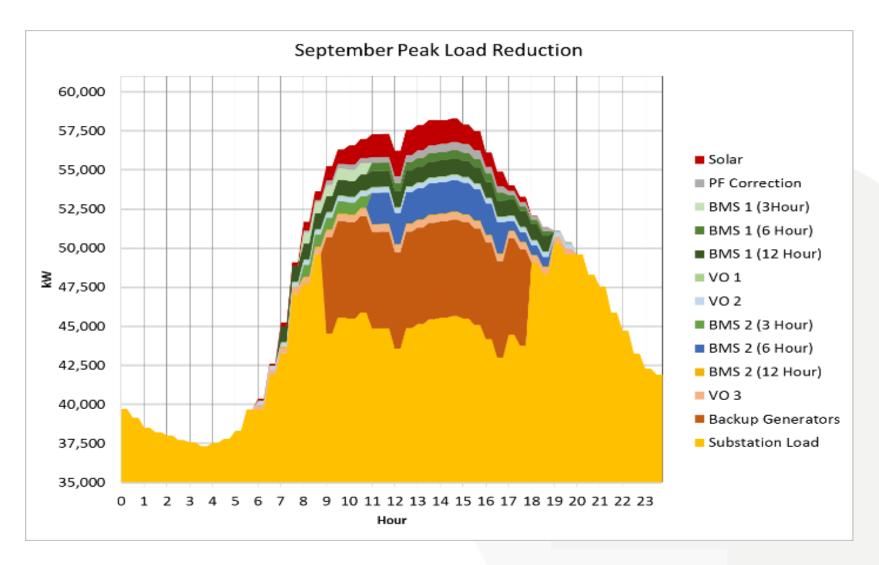
 Best Buy: 36% of residential customers desire to "financiall and physically protect the home" (Home Safeguarding persona)



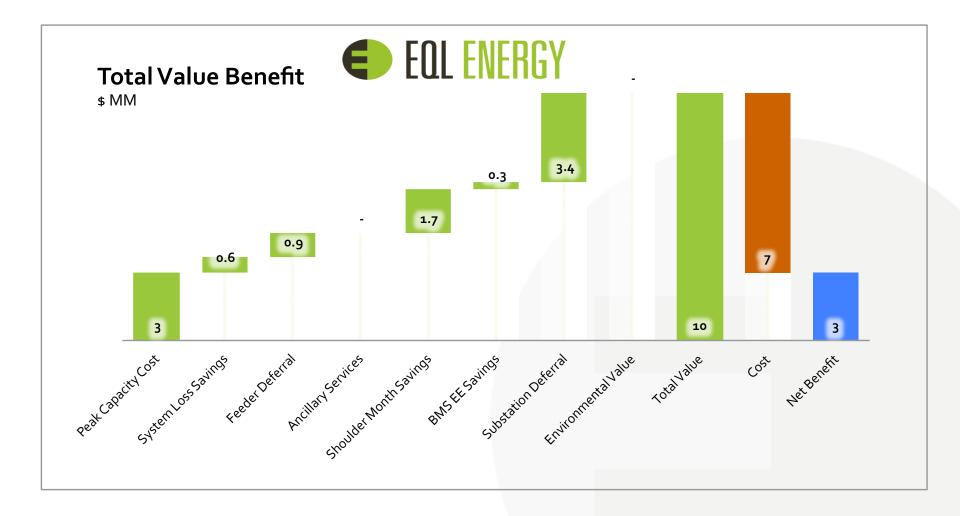
>5,000 Solar Jobs in PNW



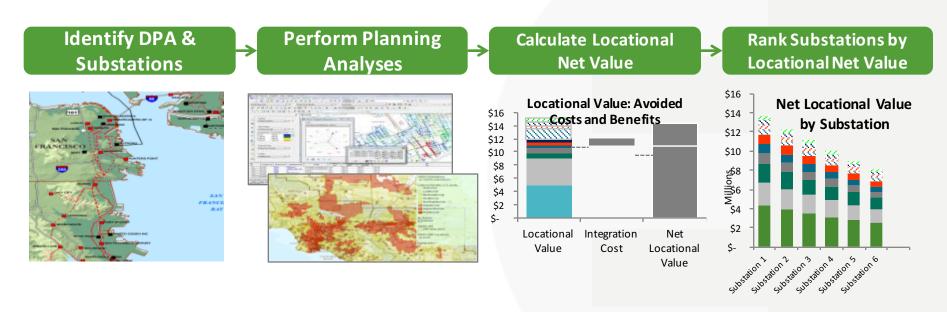
>15,000 Energy Efficiency Jobs in PNW



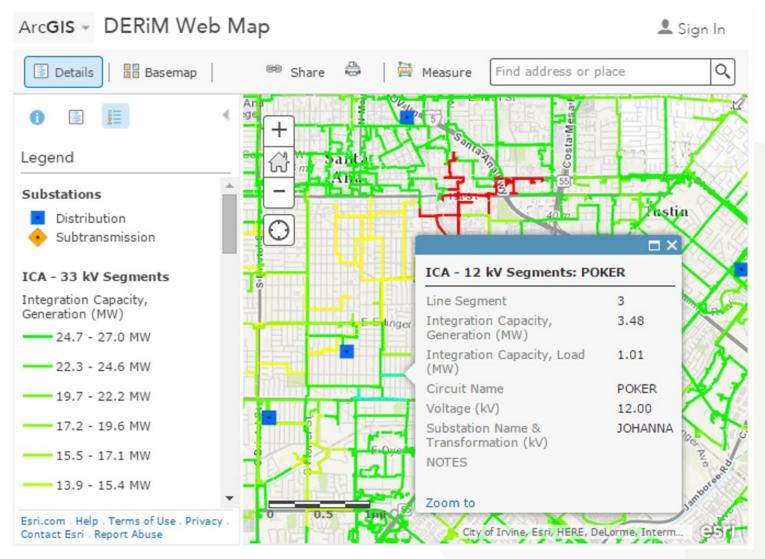
DER for two 69kVA Substations


BMS Measures

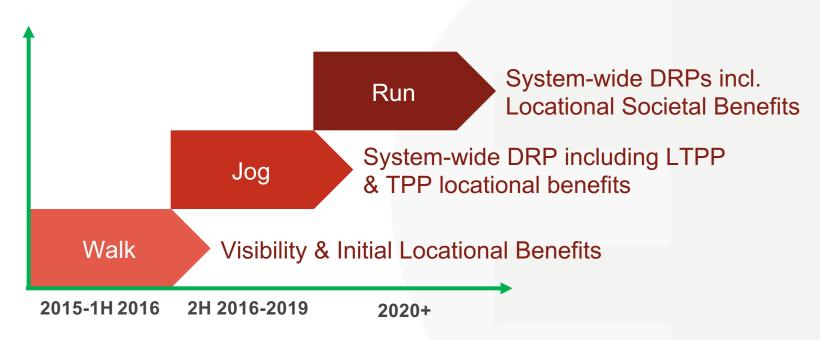
Measure	Winter KVA Shed Level 1	Winter KVA Shed Level 2	Summer KVA Shed Level 1	Summer KVA Shed Level 2
Command to Low Speed	4		4	
Command VFD to 50% cfm	0	12	0	12
Convert to Variable Flow Loop	0		0	
Curtail Radiant System	8		8	
Disable Fan Coil Unit Fans	0	0	0	0
Install VFD on Lab Exhaust Fans	83	0	83	0
Lock-Out Elevators	0	120	0	120
Lock-Out EV Chargers	50	0	50	0
Pre-Cool Ice Rink	0	500	0	500
Reduce dP Setpoint	19	0	9	0
Reduce Duct Static Pressure Set Point	321	0	321	0
Reduce Velocity Pressure	9	0	9	0
Remove Bypass Flow Control to dP	11	0	11	0
Shut Off AHU	11	117	11	117
Shut Off Chiller	0	66	0	949
Shut Off DW Booster Pumps	71	0	71	0
Shut Off Electric Boiler	40	0	40	0
Shut Off Heat Pumps	0	108	0	0
Shut Off Heat Recovery	0	146	0	0
Shut Off HR Chiller	0	191	0	0
Shut Off Lights	220	0	220	0
Shut Off Pump	12	21	12	21
Temperature Setback	68	0	274	117
Tune VFD Controls	22	0	22	0
Totals	949	1281	1145	1836


NPV of Substation Capacity DSM

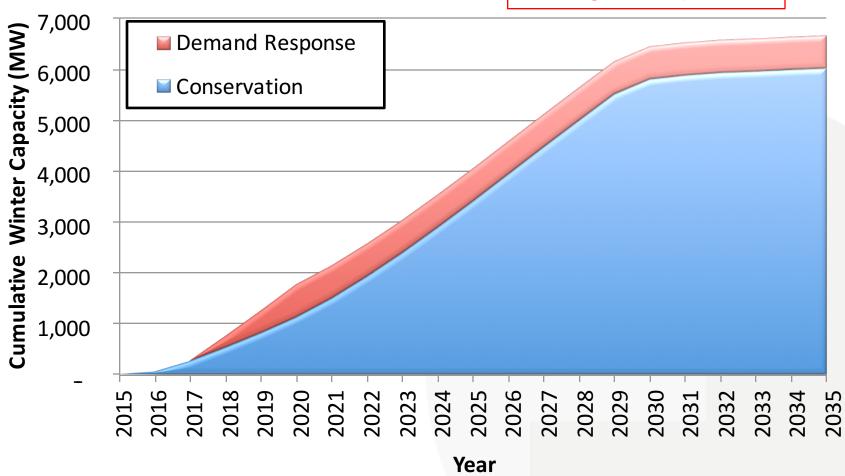
Distribution Resource Planning (DRP)



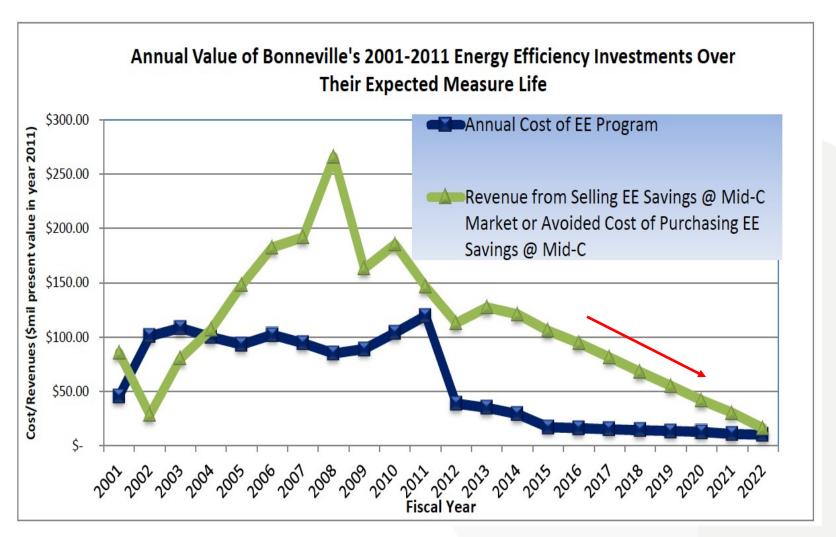
- Purpose is for distribution planning to include DER energy capacity, "smart" capabilities, energy efficiency, and market incentives during long-term distribution planning
- These factors would then be balanced against the avoided costs of ""traditional" distribution planning


SCE Available Capacity by Line Section

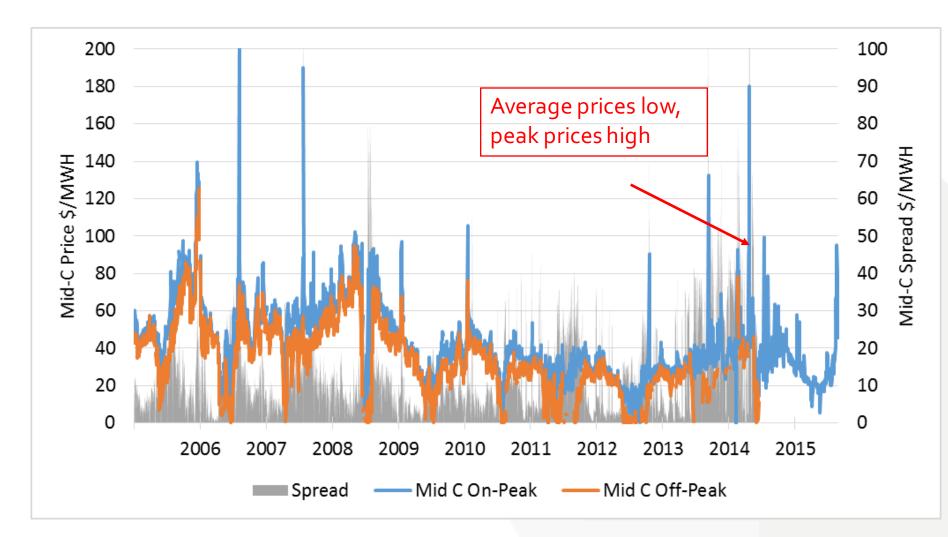
Evolution of DRP Optimal Location Benefits Analysis


- What are the immediate benefit categories that can reasonably be evaluated?
- What are the next logical set (incl. data and tools needed) for system-wide DRPs?

PNW: Conservation and Demand Response Lowest Cost, Lowest Risk


US 2013 DR > 28,000 MW

Source: Northwest Power and Conservation Council, Mar. 2015



Energy Efficiency Net Benefit ~\$1 Billion for BPA

Focus on Peak Demand Reduction

DER	2022 WECC (MW) ¹	2013 PNW (MW)	2022 PNW Market Potential ^{2, 3}
Solar (Helena better than Jacksonville FL)	25,000	188	2,300
Combined Heat and Power (CHP)	9,000	15	1,000
Demand Response – Renewable Integration	2,600	0	305
Demand Response – Peak Reduction	4,700	420	1,000
Energy Storage	1,800	5	55
Dispatchable Backup Generators		100	800
Energy Efficiency (amounts not included)			
Total	43,400	713	14,660

- 1. Source: EQL Energy for Western Interstate Energy Board May 2015,
- 2. Summary of 2013 TEPPC high DG case, 2013 LBNL
- 3. http://www.westernenergyboard.org/sptsc/workgroups/dsmwg/webinars/2013/2-HiDSM-DGwebdr.pdf

Stakeholders

- Distribution Utility
- Utility Shareholders
- Regulators
- Ratepayers
- DER owners
- Economic Development
 - (politicians/business associations)
- Solar industry (175,000 employed)
- Cleantech Companies
- Third party DER, Retail energy providers
- Utility Distribution Equipment Vendors
- Concerned Citizens

Summary

Legislative / Regulatory actions

- Support Utility Transition in business models
- Value of solar DER >>> DRP
 - Distribution Resources Planning (CA AB327, WA 2045)
- Utility Roadmaps pilot>demo>scale
- Combined Heat and Power (WA E2SHB 1095, OR SB 844)
- Support (Mandate) Standards OpenADR, IEEE1547
- Obtain Demand Response as we have Energy Efficiency (NPCC 7th Plan)

Ken Nichols, Principal, EQL Energy
503 438 8223
ken@eqlenergy.com
www.eqlenergy.com

Link to Western Interstate Energy Board paper: Emerging Changes in Electric Distribution Systems in Western States and Provinces

http://westernenergyboard.org/2015/05/final-report-released-by-eql